28 research outputs found

    Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagetic anomalies prior to the L'Aquila earthquake as pre-seismic ones. Part I

    Get PDF
    Ultra low frequency, kHz and MHz electromagnetic anomalies were recorded prior to the L'Aquila catastrophic earthquake that occurred on April 6, 2009. The main aims of this contribution are: (i) To suggest a procedure for the designation of detected EM anomalies as seismogenic ones. We do not expect to be possible to provide a succinct and solid definition of a pre-seismic EM emission. Instead, we attempt, through a multidisciplinary analysis, to provide elements of a definition. (ii) To link the detected MHz and kHz EM anomalies with equivalent last stages of the L'Aquila earthquake preparation process. (iii) To put forward physically meaningful arguments to support a way of quantifying the time to global failure and the identification of distinguishing features beyond which the evolution towards global failure becomes irreversible. The whole effort is unfolded in two consecutive parts. We clarify we try to specify not only whether or not a single EM anomaly is pre-seismic in itself, but mainly whether a combination of kHz, MHz, and ULF EM anomalies can be characterized as pre-seismic one

    Scaling similarities of multiple fracturing of solid materials

    Get PDF
    It has recently reported that electromagnetic flashes of low-energy <IMG WIDTH='12' HEIGHT='29' ALIGN='MIDDLE' BORDER='0' src='http://www.nonlin-processes-geophys.net/11/137/2004/npg-11-137-img1.gif' ALT='gammagamma'>-rays emitted during multi-fracturing on a neutron star, and electromagnetic pulses emitted in the laboratory by a disordered material subjected to an increasing external load, share distinctive statistical properties with earthquakes, such as power-law energy distributions (Cheng et al., 1996; Kossobokov et al., 2000; Rabinovitch et al., 2001; Sornette and Helmstetter, 2002). The neutron starquakes may release strain energies up to <IMG WIDTH='32' HEIGHT='16' ALIGN='BOTTOM' BORDER='0' src='http://www.nonlin-processes-geophys.net/11/137/2004/npg-11-137-img2.gif' ALT='104610^{46}'>erg, while, the fractures in laboratory samples release strain energies approximately a fraction of an erg. An earthquake fault region can build up strain energy up to approximately <IMG WIDTH='32' HEIGHT='16' ALIGN='BOTTOM' BORDER='0' src='http://www.nonlin-processes-geophys.net/11/137/2004/npg-11-137-img3.gif' ALT='102610^{26}'>erg for the strongest earthquakes. Clear sequences of kilohertz-megahertz electromagnetic avalanches have been detected from a few days up to a few hours prior to recent destructive earthquakes in Greece. A question that arises effortlessly is if the pre-seismic electromagnetic fluctuations also share the same statistical properties. Our study justifies a positive answer. Our analysis also reveals 'symptoms' of a transition to the main rupture common with earthquake sequences and acoustic emission pulses observed during laboratory experiments (Maes et al., 1998)

    Unified approach to catastrophic events: from the normal state to geological or biological shock in terms of spectral fractal and nonlinear analysis

    Get PDF
    An important question in geophysics is whether earthquakes (EQs) can be anticipated prior to their occurrence. Pre-seismic electromagnetic (EM) emissions provide a promising window through which the dynamics of EQ preparation can be investigated. However, the existence of precursory features in pre-seismic EM emissions is still debatable: in principle, it is difficult to prove associations between events separated in time, such as EQs and their EM precursors. The scope of this paper is the investigation of the pre-seismic EM activity in terms of complexity. A basic reason for our interest in complexity is the striking similarity in behavior close to irreversible phase transitions among systems that are otherwise quite different in nature. Interestingly, theoretical studies (Hopfield, 1994; Herz and Hopfield 1995; Rundle et al., 1995; Corral et al., 1997) suggest that the EQ dynamics at the final stage and neural seizure dynamics should have many similar features and can be analyzed within similar mathematical frameworks. Motivated by this hypothesis, we evaluate the capability of linear and non-linear techniques to extract common features from brain electrical activities and pre-seismic EM emissions predictive of epileptic seizures and EQs respectively. The results suggest that a unified theory may exist for the ways in which firing neurons and opening cracks organize themselves to produce a large crisis, while the preparation of an epileptic shock or a large EQ can be studied in terms of ''Intermittent Criticality''

    Critical features in electromagnetic anomalies detected prior to the L'Aquila earthquake

    Full text link
    Electromagnetic (EM) emissions in a wide frequency spectrum ranging from kHz to MHz are produced by opening cracks, which can be considered as the so-called precursors of general fracture. We emphasize that the MHz radiation appears earlier than the kHz in both laboratory and geophysical scale. An important challenge in this field of research is to distinguish characteristic epochs in the evolution of precursory EM activity and identify them with the equivalent last stages in the earthquake (EQ) preparation process. Recently, we proposed the following two epochs/stages model: (i) The second epoch, which includes the finally emerged strong impulsive kHz EM emission is due to the fracture of the high strength large asperities that are distributed along the activated fault sustaining the system. (ii) The first epoch, which includes the initially emerged MHz EM radiation is thought to be due to the fracture of a highly heterogeneous system that surrounds the family of asperities. A catastrophic EQ of magnitude Mw = 6.3 occurred on 06/04/2009 in central Italy. The majority of the damage occurred in the city of L'Aquila. Clear kHz - MHz EM anomalies have been detected prior to the L'Aquila EQ. Herein, we investigate the seismogenic origin of the detected MHz anomaly. The analysis in terms of intermittent dynamics of critical fluctuations reveals that the candidate EM precursor: (i) can be described in analogy with a thermal continuous phase transition; (ii) has anti-persistent behaviour. These features suggest that the emerged candidate precursor could be triggered by microfractures in the highly disordered system that surrounded the backbone of asperities of the activated fault. We introduce a criterion for an underlying strong critical behavior.Comment: 8 pages, 6 figure

    Experience of short term earthquake precursors with VLF?VHF electromagnetic emissions

    No full text
    International audienceElectromagnetic anomalies (EMA) covering a wide range of frequencies from ULF, VLF up to VHF have been observed before recent destructive earthquakes in continental Greece. We show that the features of these signals are possibly correlated with the fault model characteristics of the associated earthquake and with the degree of geotectonic heterogeneity within the focal zone. The time evolution of these electromagnetic sequences reveals striking similarities to that observed in laboratory acoustic and electromagnetic emissions during different stages of failure preparation process in rocks. If we consider that the same dynamics governs the large-scale earthquakes and the microscopic scale sample rheological structure, the results of this analysis suggest that the recorded EMA might reflect the nucleation phase of the associated impending earthquake. We focus on the rise of the statistical view of earthquakes. We find electro-magnetic fingerprints of an underlying critical mechanism. Finally, we conclude that it is useful to combine ULF and VLF-VHF field measurements in an attempt to enhance the understanding of the physics behind these observations and thus to improve the quality of earthquake prediction. Further, the identification of an EMA as a seismogenic one supports the characterization of a sequence of shocks as foreshocks at the time they occur, further helping the earthquake prediction effort

    Point-Based Neural Rendering with Per-View Optimization

    Get PDF
    OPAL-MesoInternational audienceThere has recently been great interest in neural rendering methods. Some approaches use 3D geometry reconstructed with Multi-View Stereo (MVS) but cannot recover from the errors of this process, while others directly learn a volumetric neural representation, but suffer from expensive training and inference. We introduce a general approach that is initialized with MVS, but allows further optimization of scene properties in the space of input views, including depth and reprojected features, resulting in improved novel view synthesis. A key element of our approach is a differentiable point-based splatting pipeline, based on our bi-directional Elliptical Weighted Average solution. To further improve quality and efficiency of our point-based method, we introduce a probabilistic depth test and efficient camera selection. We use these elements together in our neural renderer, allowing us to achieve a good compromise between quality and speed. Our pipeline can be applied to multi-view harmonization and stylization in addition to novel view synthesis

    Detection of electromagnetic earthquake precursory signals in Greece

    No full text
    Electromagnetic (EM) anomalies were detected in a nide frequency band prior to the two strongest earthquakes that occurred in Greece during 1995, i.e., at Kozani-Grevena and Egio-Eratini areas. The analysis of these se EM anomalies indicates that these EM anomalies should be pre-seismic ones. Two basic characteristics emerged: (i) The lead time of each disturbance was systematically smaller in the case of Kozani-Grevena earthquake than that of that Egio-Eratini earthquake. (ii) An almost simultaneous cessation of the EM anomalies, although they had different onset times and were detected in a wide frequency range. As for the seismic activity that occurred in Greece during the last year, pre-seismic EM anomalies were detected before (i) the September 7, 1999, Athens eearthquake and (ii) other smaller EQs. The possibility to predict, the parameters of an impending EQ from the EM anomalies is also investigated
    corecore